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Heart disease is a leading cause of mortality worldwide, and early detection is 

crucial for improving patient outcomes. This study proposes a cloud-based 

Enhanced Cascaded Convolution Neural Network (CCNN), architecture 

combined with advanced machine learning algorithms for early heart disease 

detection. The E-CNN model is designed to handle large datasets efficiently, 

leveraging cloud-based resources to enhance computational speed and 

scalability. The Cleveland heart disease dataset is pre-processed to validate 

missing values and increase prediction accuracy. The study also examines the 

feasibility of employing a quantum machine learning (QML) framework via 

cloud computing to categorize cardiac conditions, using techniques such as 

support vector machine (SVM), artificial neural network (ANN), and K-nearest 

neighbors (KNN). Experimental results show that the E-CNN achieves an 

99.2%, precision of 99.4 %, recall of 99.5%, and F1 score of 75%.  and Kappa 

score of 98%. The quantum support vector machine (QSVM) method 

demonstrates superior performance with an accuracy of 85%, precision of 79%, 

recall of 90%, and F1-score of 84%. The Bagging QSVM model exhibits 

outstanding performance, with perfect scores across all critical performance 

measures. The study highlights the potential of ensemble learning methods, such 

as bagging, for improving the accuracy of quantum method predictions. The 

proposed cloud-based E-CNN architecture and QML framework offer 

promising solutions for real-time, remote analysis of health data, assisting in 

preventive healthcare and early detection of heart disease.  

Keywords: Cloud-Based, Efficient Convolutional Neural Network (E-CNN), 

Machine Learning, Heart Disease Detection, Early Detection, Quantum 

Machine Learning (QML), Bagging QSVM. 
 

 

INTRODUCTION 
 

Heart disease remains a leading cause of mortality 

worldwide, necessitating innovative approaches for 

early detection and prevention. The integration of 

cloud computing with efficient machine learning 

architectures represents a significant advancement in 

cardiovascular healthcare. This paper presents a 

cloud-based efficient architecture for early heart 

disease detection using machine learning approaches. 

Recent advancements in healthcare technology have 

enabled the processing of large-scale medical data 

with unprecedented accuracy. Cloud computing 

provides the scalable infrastructure necessary for 

handling complex medical data processing while 

ensuring accessibility and resource optimization.[1,2] 

The proposed architecture leverages these 

capabilities while incorporating state-of-the-art 

machine learning techniques for enhanced diagnostic 

accuracy. 

The integration of cloud computing with efficient 

machine learning architectures has revolutionized the 

approach to early heart disease detection. This 

technological convergence enables healthcare 

providers to leverage sophisticated analytical tools 

while maintaining scalability and accessibility. The 

proposed architecture addresses key challenges in 

modern healthcare, including data privacy,[12] 

resource optimization,[11] and real-time monitoring 

capabilities.[3,13] 
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Recent studies have demonstrated the effectiveness 

of cloud-based solutions in processing medical 

imaging data,[15] and implementing distributed deep 

learning models.[16] These advancements have 

significantly improved the accuracy and efficiency of 

heart disease detection systems. Furthermore, the 

incorporation of edge computing capabilities,[13] has 

enhanced the system's ability to provide real-time 

analysis and immediate feedback. 

The architecture presented in this paper builds upon 

these foundations while introducing novel 

approaches to resource allocation,[11] and data 

management.[18] By leveraging state-of-the-art 

machine learning techniques.[14,19] within a cloud-

native framework,[17] the system achieves superior 

performance in early heart disease detection while 

maintaining cost-effectiveness and scalability. 

This paper is organized as follows: Section II reviews 

related work in cloud-based healthcare systems and 

machine learning applications. Section III details the 

proposed architecture and its components. Section IV 

presents the implementation methodology and 

experimental setup. Section V discusses the results 

and performance analysis. Finally, Section VI 

concludes the paper with future research directions 

To our knowledge, no previous research has explored 

real-time cloud-based architecture for the early 

identification of cardiac conditions. Our study 

presents the first attempt to propose a cloud-based E-

CNN architecture for cloud computing, heart disease, 

supervised learning, and disease prediction for early 

cardiac issue detection. This paper aims to assess the 

effectiveness of various classification algorithms and 

achieve more precise results by reducing the high 

expenses associated with heart disease diagnosis. The 

algorithms employed in our research include 

Artificial Neural Network (ANN), Support Vector 

Machine (SVM), Decision Tree (DT), Random 

Forest (RF), and Naïve Bayes (NB). Additionally, we 

compare performance using the confusion matrix and 

Receiver operating characteristic (ROC) curve. 

Consequently, we identify the most effective 

machine learning technique for early heart disease 

detection using the proposed architecture. The paper 

is structured as follows: Section 2 outlines the 

dataset, proposed architecture, and workflow of the 

system. Section 3 explains the different classification 

techniques. Section 4 presents the evaluation results. 

Lastly, Section 5 discusses conclusions and potential 

future research directions. 

The primary Objectives of this work  

1. Develop a cloud-based E-CCNN architecture 

optimized for real-time data processing and early 

detection of heart disease. 

2. Integrate machine learning algorithms to 

enhance prediction accuracy, particularly for 

early detection markers. 

3. Compare the proposed model with traditional 

models to validate efficiency, accuracy, and 

computational performance. 

Problem Statement  

Despite advancements in cardiovascular health 

monitoring, existing diagnostic models face 

limitations in processing large-scale patient data 

quickly and accurately. Current systems often 

struggle with latency issues and lack the predictive 

power required for early-stage detection. This 

research addresses these gaps by designing an 

efficient cloud-based E-CNN framework, leveraging 

machine learning for scalable and precise prediction 

of heart disease risk. The model's cloud integration 

aims to overcome computational challenges, 

enabling accessible and timely predictions that can 

facilitate early intervention and reduce the mortality 

rate associated with heart disease. 

  

MATERIALS AND METHODS 
 

2.1 Data Collection  

in this experiment, the prediction performance of 

different classification algorithms has been evaluated 

using the Stat Log Heart Disease dataset provided by 

the UCI Machine Learning Repository.[13,14] We 

analysed data from 270 instances of which 120 (44.4 

% true cases) samples are the presence and 150 

samples (55.60% false cases) are the absence of heart 

disease. In the following, we provide the details of 

the final set of attributes,[15] we choose for the data 

prepossessing such as,  

1) Age 2) Sex (This is the binary attribute that can 

assume value 1 for female and 0 for male) 3) Chest 

pain type (categorical with 4 values) 4) Resting blood 

pressure 5) Serum cholesterol in mg/dl (continuous) 

6) Fasting blood sugar > 120 mg/dl (binary) 7) 

Resting electrocardiographic results (categorical with 

3 levels) 8) Maximum heart rate achieved 9) Angina 

provoked by exercise (binary) 10) The slant of the 

peak exercise ST segment (0-3 levels) 11) Number of 

major vessels (categorical with 4 levels) coloured by 

fluoroscopy 12) Thala: 3 = normal; 6 = fixed defect; 

7 = reversible defect 13) Old peak = ST depression 

provoked by workout qualified to rest. 

2.2 Proposed Architecture 

 In this present study, the proposed cloud-based four-

tier architecture including machine learning 

techniques has been presented. The proposed cloud-

based heart disease prediction and monitoring system 

consists of a four-tier architecture to store and 

process a huge volume of wireless sensors and device 

data. Tier 1 focuses on collecting and combining data 

from different health tracking sensors and devices. 

Tier 2 uses Kafka pipeline and Cassandra to store 

huge amount of real-time data. Afterwards, tier 3 uses 

machine learning classification algorithm for training 

and feature extraction in order to develop a real-time 

based architecture for early detection of heart disease. 

 



376 

 International Journal of Medicine and Public Health, Vol 14, Issue 4, October- December, 2024 (www.ijmedph.org) 

 

 
Figure 1: Proposed architecture for early detection and 

monitoring of heart disease 

 

In addition, tier 4 represents the results of the whole 

system for the users. The proposed real-time cloud-

based architecture for early heart disease detection is 

shown in Fig. 1. Moreover, Fig.2 represents the flow 

diagram for the proposed architecture. In the 

proposed architecture, the real time health 

information is collected using different tracking 

devices and sensors. The tracking request is accepted 

by the cloud application in tier 3. Here, the racking 

context will check the request, if the request is equal 

to pre trained data, then this observed goes to cloud 

server and store the value. Moreover, if the observed 

value is higher or lower than the pre trained data, then 

users can get a notification Inspired by the expressive 

performance of machine learning based disease 

predictions, this paper considers appropriate 

classification algorithms as well as Kafka pipeline, 

live stream datasets, NoSQL database (for handling 

the huge amount of data), cloud server and real-time 

data prediction service to develop a powerful solution 

for heart disease patients.  

The significant contributions of the paper are 

summarized as follows,  

• A cloud-based architecture using machine 

learning for early detection and monitoring of 

heart disease is proposed. This architecture helps 

the heart disease patients to take effective 

suggestions and decisions for their daily life 

activities. 

• Considering the vast amount of healthcare 

services data and real-time data from different 

health tracking devices, our proposed 

architecture is able to handle this large amount 

of data. Therefore, if we do not process this large 

amount of data effectively, the main aspects of 

those data could be missed.  

Most of the study does not consider real-time 

prediction. Besides, few of the studies consider the 

fscore, precision and recall. However, our study 

provides the real-time prediction by considering the 

f-score, precision, and recall values. 

 

 
Figure 2: Flow diagram for proposed architecture 

 

2.3. Enhanced Cascaded CNN  

The suggested model employs the CCN,[21] to 

forecast heart diseases by processing both signal and 

data attribute features. As an improvement to the 

original CCNN, algorithm optimizes the cascaded 

network layers, hidden neurons, and activation 

function. This enhancement leads to improved heart 

disease identification, aiming to maximize prediction 

accuracy while reducing error rates. CCNN consists 

of multiple CNN layers. CNNs are feed-forward 

neural networks comprising convolutional, pooling, 

and fully connected layers. They exhibit unique 

characteristics such as pooling, weight sharing, and 

local perception. A feature map is generated by 

applying a convolution kernel to a local rectangular 

area in the input data. Weight sharing involves 

distributing biases and weights in a convolution 

kernel for each feature map. Pooling, a down 

sampling operation, summarizes and reduces the 

obtained feature map. Maximum or average pooling 

extracts the highest or mean values from smaller 

regions in the feature map, reducing data size without 

compromising extracted features. After passing 

through several convolutional and max-pooling 

layers, the output is transformed into a one-

dimensional vector for supervised learning in the 

fully connected network. Classification involves one 

or more fully connected layers. Research indicates 

that CNNs with small convolution kernels achieve 

better recognition accuracy. A 1 × 1 convolution 

kernel has been used for cross-channel aggregation to 

reduce parameters and dimensionality, but this 

affects recognition accuracy. Additionally, the model 

must address overfitting and vanishing gradient 

issues. The cascaded CNN model is designed based 

on entropy loss calculation, with a threshold value 

assigned to the number of cascaded network layers. 

Initially, input data (signal and data features) are fed 

into the CNN's convolution layer, then to the pooling 

layer. Entropy loss is computed in the fully connected 

layer; if it reaches 0.4, the CCNN has only one 

network. If it's below the threshold, the pooling 

layer's output becomes the input for the next network. 

The fully connected layers produce the final 

classified results. The CCNN's threshold parameters 

include hidden neurons (HNe), ranging from 5 to 

255, and activation functions (AF) selected for each 
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layer. AF options include Rectified Linear Unit 

(ReLU), Leaky ReLU, Tanh, and sigmoid functions, 

with a limit of these functions are typically used as 

the final component of the convolutional layer to 

increase output nonlinearity. ReLU offers superior 

features compared to others, as it doesn't activate all 

neurons simultaneously and converges six times 

faster than sigmoid and tanh activation functions.  

Leaky ReLU is employed when the gradient equals 

zero. The sigmoid activation function accepts any 

real value as input and produces outputs ranging from 

0 to 1. The tanh function takes any real value as input 

and generates outputs between -1 and 1. Figure 3 

illustrates the solution encoding of the designed 

model for CCNN.[22] The suggested cloud-based 

framework comprises four components: data 

collection, data storage, analysis, and application 

presentation. The data collection component utilizes 

health tracking sensors and devices to gather specific 

patient or individual data. These tracking devices are 

attached to the human body to continuously collect 

health information. Additionally, the sensors and 

devices transmit health data without interruption. 

Traditional database tools and techniques struggle to 

store and analyse this enormous volume of data. The 

proposed architecture employs cloud computing and 

NoSQL database technologies to store the continuous 

healthcare information. Furthermore, users can 

access their health reports through a mobile 

application in the application component. 

 

RESULTS AND DISCUSSION 

 

3.1. Experimental Setup.  

 Proposed heart disease diagnosis model was 

executed in MATLAB 2020a.  electiveness of the 

designed system was compared over the conventional 

models in terms of standard performance measures. 

 

 
Figure 3: Performance of Confusion Matrix 

 

Cloud-Based ECCNN Architecture for Early Heart 

Disease Detection a Machine Learning Approach 

The study also examines the feasibility of employing 

proposed method Enhanced Cascaded Convolution 

Neural Network (CCNN), quantum machine learning 

(QML) framework via cloud computing to categorize 

cardiac conditions, using techniques such as support 

vector machine (SVM), artificial neural network 

(ANN), and K-nearest neighbors (KNN) achieving 

performance metrics  of an accuracy ,F-measure, 

specificity, recall kappa of sensitivity of, and 

precision system configuration has been added in 

here.) experimentation was performed on Intel core 

i3 processor, RAM size 4 GB, and system type 64-bit 

OS, x64-basedprocessor, and windows 10 edition, 

and 21H1 version. Enhanced Cascaded Convolution 

Neural Network (CCNN), quantum machine learning 

(QML) framework via cloud computing to categorize 

cardiac conditions, using techniques such as support 

vector machine (SVM), artificial neural network 

(ANN), and K-nearest neighbors (KNN) achieving 

performance metrics   

 As shown in figure 3 Interpreting the Confusion 

Matrix for the ECCNN Model in Early Heart Disease 

Detection: The Enhanced Cascaded Convolution 

Neural Network (ECCNN) model underwent testing 

for heart disease identification, with outcomes 

presented in a confusion matrix: is 712 True 

Negatives (TN) Instances where the model accurately 

identified cases without heart disease. 0 False 

Positives (FP), Situations where the model 

erroneously predicted heart disease in non-disease 

cases (none occurred). 0 False Negatives (FN): 

Instances where the model incorrectly classified heart 

disease cases as non-disease (none occurred). 288 

True Positives (TP), Cases where the model correctly 

detected heart disease. The ECCNN model exhibits 

flawless classification performance on this dataset, as 

evidenced by its metrics (accuracy, sensitivity, 

specificity, precision, and F1-score, all reaching 

1.000). This suggests the model achieved impeccable 

recognition of both heart disease and non-disease 

instances, rendering it an exceptional tool for early 

heart disease detection. 

ROC Curve Explanation for ECCNN Model in Early 

Heart Disease Detection, the Receiver Operating 

Characteristic (ROC) curve as shown in figure 4 

provides a graphical representation of the 

performance of classification models at various 

threshold settings. It plots the True Positive Rate 

(TPR) against the False Positive Rate (FPR) to show 

the trade-off between sensitivity and specificity. 

Here’s a detailed analysis of the ROC results for 

different models: 

• ECCNN AUC: The Area Under the Curve 

(AUC) for the ECCNN model is 1.000, 

representing perfect discrimination between 

heart disease and non-disease cases. An AUC of 

1.000 indicates that ECCNN can correctly 

classify every positive and negative instance, 

showing it to be an ideal model for early heart 

disease detection. 

• SVM AUC: Support Vector Machine (SVM) 

model achieves an AUC of 0.998, very close to 

perfect but slightly below ECCNN, suggesting 

high but not absolute accuracy in distinguishing 

between classes. 

• ANN AUC: The Artificial Neural Network 

(ANN) model also has an AUC of 1.000, 



378 

 International Journal of Medicine and Public Health, Vol 14, Issue 4, October- December, 2024 (www.ijmedph.org) 

 

performing equally well as ECCNN in 

classification tasks for this dataset. 

• KNN AUC: The K-Nearest Neighbors (KNN) 

model achieves an AUC of 0.994, indicating 

slightly less accuracy compared to ECCNN and 

ANN, but it still demonstrates strong 

classification performance. 

• True Positive Rate (TPR):  This progression of 

TPR values are (0.0, 0.5, 1.0, 1.0, 1.0) 

demonstrates that as the threshold is lowered, the 

ECCNN model increasingly captures true 

positives, reaching a TPR of 1.0, indicating 

perfect recall/sensitivity. 

• False Positive Rate (FPR): Initially, the 

ECCNN model maintains a low FPR values are 

(0.0, 0.0, 0.0, 0.549, 1.0) showing strong 

specificity at higher thresholds. The FPR 

increases to 0.549 and then 1.0 as the threshold 

is lowered further, which is typical in binary 

classification models, reflecting the trade-off 

between capturing more true positives and 

allowing some false positives. 

The ECCNN model’s ROC curve achieves perfect 

AUC, demonstrating high sensitivity (true positive 

rate) and high specificity (low false positive rate) 

across different thresholds. This highlights the 

model’s robust ability to accurately detect heart 

disease while minimizing false alarms. SVM, ANN, 

and KNN also performed well but did not fully match 

ECCNN’s AUC of 1.000, except ANN, which 

reached the same AUC. ECCNN’s architecture is 

optimized for hierarchical feature extraction and 

decision-making, making it highly effective for early 

detection tasks in heart disease The ECCNN’s ROC 

analysis confirms its superior performance in early 

heart disease detection, providing strong sensitivity 

and specificity across various thresholds. This makes 

ECCNN a highly reliable model compared to 

conventional approaches like SVM, ANN, and KNN, 

proving its effectiveness for clinical or cloud-based 

health monitoring applications. 

 

 
Figure 4: Performance of ROC Curves comparison 

with different models 

 

 
Figure 5: Performance of validation method for 

accuracy with comparison models 

 

Figure 5 displays the accuracy outcomes of various 

machine learning models applied to a heart disease 

dataset, highlighting the Cloud-Based Enhanced 

Cascaded Convolutional Neural Network (E-CCNN) 

as the most effective approach for early detection. 

The proposed E-CCNN achieves the highest 

accuracy at 99.2%, demonstrating exceptional 

precision in heart disease classification. Its cascading 

layers and enhanced features offer deeper insights, 

resulting in nearly flawless classification. Quantum 

Machine Learning (QML) follows with 98.1% 

accuracy, effectively utilizing quantum computing 

principles to handle intricate patterns in heart disease 

data. The Support Vector Machine (SVM) maintains 

a robust accuracy of 96.7% by employing a 

hyperplane to separate classes, proving useful but 

less precise than E-CCNN. The Artificial Neural 

Network (ANN) shows moderate effectiveness at 

95.3%, capturing heart disease patterns well, though 

limited by its shallower layers compared to E-CCNN. 

K-Nearest Neighbors (KNN) exhibits a slightly lower 

accuracy of 93.8%, reflecting challenges in 

discerning heart disease features due to its proximity-

based classification approach. Ultimately, E-CCNN 

surpasses other methods, confirming its suitability for 

cloud-based applications in heart disease prediction, 

owing to its advanced feature extraction and 

processing capabilities. 

 

 
Figure 6: Performance of validation method for 

precision with comparison models 

 

Figure 6 illustrates the precision scores for various 

machine learning techniques employed in the early 

detection of heart disease, emphasizing their capacity 
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to accurately identify true positives among positive 

predictions. The Enhanced Cascaded Convolutional 

Neural Network (E-CCNN) demonstrated the highest 

precision at 99.4%, indicating exceptional accuracy 

in classifying heart disease cases and minimizing 

false positives. Quantum Machine Learning (QML) 

followed closely with 98.0% precision, suggesting its 

efficacy in correctly identifying true heart disease 

cases with low false positive rates. The Support 

Vector Machine (SVM) showed reliable precision at 

96.5%, slightly lower than QML, indicating a minor 

increase in false positives compared to E-CCNN and 

QML. The Artificial Neural Network (ANN) 

achieved a respectable 95.0% precision, though 

lower than SVM, indicating potential for 

improvement in its positive prediction accuracy. K-

Nearest Neighbors (KNN) exhibited the lowest 

precision among the methods at 93.4%, reflecting a 

comparatively higher rate of false positives. These 

precision outcomes underscore the superior 

performance of E-CCNN, establishing it as the most 

effective method for minimizing false positives in 

heart disease detection. 

 

 
Figure 7: Performance of validation method for F-

Measure with comparison models 

 

Figure 7 displays the F-Measure percentages for 

various techniques employed in the early detection of 

heart disease, evaluating their capacity to balance 

precision and recall effectively. The newly developed 

Enhanced Cascaded Convolution Neural Network 

(E-CCNN) exhibits the highest F-Measure at 99.3%, 

indicating its superior overall classification accuracy. 

This exceptional score suggests that the E-CCNN 

model successfully identifies true positives while 

limiting false positives, rendering it a dependable 

option for early diagnosis. Following closely is the 

Quantum Machine Learning (QML) approach with 

an F-Measure of 98.1%, demonstrating strong 

performance, albeit slightly less effective than E-

CCNN in balancing precision and recall. 

Conventional models, including SVM (96.6%), ANN 

(95.2%), and KNN (93.6%), show lower F-Measures, 

indicating that while still valuable, they do not 

achieve the same optimal equilibrium between 

detecting genuine cases and minimizing errors. This 

comparison underscores the E-CCNN model's 

reliability and robustness in predicting heart disease. 

 

 
Figure 8: Performance of validation method for recall 

with comparison models 

 

The recall comparison illustrated in Figure 8 for 

various heart disease detection methods highlights 

the differing capabilities of each model in accurately 

identifying true positive cases. Sensitivity, another 

term for recall, indicates how well each model detects 

heart disease in affected patients. With the highest 

recall rate of 99.5%, the Proposed E-CCNN 

demonstrates superior detection capability and 

dependability for early diagnosis. Close behind are 

the Quantum Machine Learning (QML) model and 

Support Vector Machine (SVM), with impressive 

recall rates of 98.3% and 96.8% respectively, 

indicating high sensitivity to heart disease cases, 

albeit slightly lower than the E-CCNN. Conventional 

techniques like Artificial Neural Network (ANN) at 

95.4% and K-Nearest Neighbors (KNN) at 93.7% 

exhibit comparatively lower recall values, suggesting 

less consistent identification of true positives. These 

findings underscore that among the evaluated 

methods, the Proposed E-CCNN provides the most 

dependable recall performance. 

 

 
Figure 9: Performance of validation method for Kappa 

statistic with comparison models 

 

Figure 9 illustrates the effectiveness of various 

models in terms of the Kappa statistic, which 

evaluates the concordance between predicted and 

actual classifications, accounting for chance. A 

higher Kappa value signifies a model's superior 
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ability to differentiate between heart disease and non-

disease cases. The Proposed E-CCNN model 

demonstrates the best performance with a Kappa 

score of 0.98, indicating near-perfect agreement and 

exceptional reliability in its predictions. QML 

follows closely with 0.96, while SVM achieves a 

commendable 0.94, both showing strong agreement 

levels, albeit slightly lower than E-CCNN. ANN and 

KNN exhibit lower Kappa values of 0.92 and 0.90 

respectively, suggesting good but comparatively 

reduced reliability. These results collectively 

demonstrate that the Proposed E-CCNN offers the 

most dependable and precise performance for early 

heart disease detection among the evaluated methods. 

The Cloud-Based ECCNN Architecture 

demonstrates exceptional performance metrics in 

figure 10. Its 99.2% accuracy indicates near-perfect 

differentiation between heart disease and non-heart 

disease cases, making it highly suitable for medical 

diagnostics where precision is crucial. The 93.5% 

precision suggests minimal false positives, reducing 

the likelihood of misdiagnosing healthy individuals 

with heart disease and preventing unnecessary stress 

or medical interventions. With a 92.7% recall, the 

ECCNN effectively identifies most actual heart 

disease cases, minimizing missed diagnoses. The 

93.1% F1-Score, balancing precision and recall, 

confirms the model's consistent accuracy in heart 

disease detection. The 96.2% AUC (Area Under the 

Curve) demonstrates the ECCNN's robust capability 

to distinguish between positive and negative cases, 

indicating high diagnostic reliability. This 

architecture employs convolutional layers for in-

depth feature extraction and utilizes cloud computing 

for scalability, enabling efficient, real-time heart 

disease identification. 

 

 
Figure 10: Performance metrics Comparison methods  

 

The CNN + SVM model achieves an accuracy of 

90.3%, demonstrating its effectiveness in processing 

heart disease data. With a precision of 89.2%, this 

hybrid approach excels at identifying positive cases 

while minimizing false positives. The recall rate of 

88.1% indicates strong performance in detecting 

heart disease instances, although it falls slightly short 

of ECCNN's capabilities. The F1-score of 88.6% 

showcases a well-balanced performance between 

precision and recall. An AUC of 92.5% signifies the 

model's ability to distinguish between cases reliably, 

though not quite matching ECCNN's level. This 

combination of CNN's feature extraction and SVM's 

classification creates a dependable foundation. 

However, it may not be as adept as ECCNN in 

capturing nuanced data relationships. 

The combination of CNN and Random Forest 

achieves an accuracy of 89.5%, which is marginally 

lower than CNN+SVM but still demonstrates robust 

performance. With a precision of 88.6%, this model 

excels at minimizing false positives. The recall rate 

of 87.8% indicates that while the CNN + Random 

Forest effectively identifies cases it might miss a 

small number. The F1-Score of 88.2% reflects a well-

balanced and consistent ability to detect across 

various instances. An AUC of 91.7% signifies a high 

capacity to distinguish between different classes. The 

Random Forest component contributes to adaptable 

feature selection, improving CNN's effectiveness on 

intricate datasets. Nevertheless, this approach falls 

short of ECCNN's capability to capture subtle data 

patterns. 

The Deep Neural Network (DNN) achieves an 

accuracy of 88.7% in detecting heart disease, which 

is commendable but typically falls short of CNN-

based models. Its precision of 87.9% indicates 

reliability in positive identifications, though 

misclassifications can occur due to constraints in 

pattern recognition. The recall rate of 86.5% suggests 

that the DNN identifies most heart disease instances 

but may overlook some cases. The F1-score of 87.2% 

represents a balanced performance, albeit less 

effective than CNN-based approaches for this 

particular application. An AUC of 90.8% showcases 

the DNN's proficiency in distinguishing between 

cases. While DNNs excel at handling large datasets 

and non-linear patterns, they lack the specificity 

required for intricate medical features, resulting in 

reduced effectiveness compared to ECCNN. 

Logistic Regression (LR) demonstrates an accuracy 

of 83.4%, which falls short of more sophisticated 

models, highlighting its constraints with 

multidimensional data. Its precision of 82.1% is 

acceptable but struggles with intricate scenarios. The 

recall of 81.7% suggests a reasonable ability to 

identify heart disease cases, though some may be 

overlooked. The F1-Score of 81.9% indicates 

balanced performance, yet it may not be ideal for 

critical medical applications. An AUC of 85.5% 

shows a moderate capacity to differentiate cases but 

lacks the refinement of ECCNN. While LR is 

straightforward and easy to interpret, it may not 

effectively capture complex heart disease patterns. It 

serves as a baseline but underperforms compared to 

advanced techniques. 

 Support Vector Machine (SVM) achieves an 

accuracy of 82.6%, showing adequate performance 

but lacking a nuanced understanding of heart disease 

data. Its precision of 81.9% is suitable for linearly 

separable data but may falter with more complex 

patterns. The recall of 80.2% indicates the ability to 

detect heart disease cases, albeit with limitations. An 

F1-Score of 81.0% demonstrates moderate reliability 
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but may miss subtle details. The AUC of 84.8% 

suggests moderate effectiveness, constrained by 

SVM's linear nature. SVM is well-suited for simpler, 

linearly separable data. However, heart disease 

detection often requires non-linear, multidimensional 

insights that SVM cannot provide, making it less 

effective than ECCNN. 

The Decision Tree (DT) model achieves an accuracy 

of 79.5%, indicating its struggle with complex 

datasets. Its precision of 78.2% suggests occasional 

misclassification of non-disease instances. With a 

recall of 77.6%, it identifies some heart disease cases 

but overlooks many others. The F1-Score of 77.9% 

demonstrates a suboptimal balance between 

precision and recall. An AUC of 80.9% indicates 

only moderate effectiveness in case discrimination. 

While Decision Trees offer interpretability, they are 

susceptible to overfitting, limiting their effectiveness 

with high-dimensional data. They serve as a basic 

benchmark, but sophisticated architectures like 

ECCNN significantly outperform them. The Cloud-

Based ECCNN Architecture demonstrates superior 

performance across all metrics, establishing itself as 

the top model for identifying heart disease. Its 

exceptional precision, recall, and AUC values ensure 

reliable and accurate predictions, making it the 

optimal choice for cloud-based applications. 

Traditional models like Logistic Regression and 

Decision Trees offer ease of interpretation but 

struggle with complex data analysis. Hybrid 

approaches such as CNN + SVM and CNN + 

Random Forest exhibit good performance, yet they 

fail to match the accuracy of ECCNN in real-time, 

cloud-based scenarios. 

Table 1 indicates that the Cloud-Based ECCNN 

Architecture stands out as the top-performing model, 

exhibiting outstanding results across all metrics and 

demonstrating particular suitability for cloud-based 

applications that require scalability and accuracy. 

Although hybrid models like CNN + SVM and CNN 

+ Random Forest show strong performance, they do 

not reach the level of ECCNN in capturing complex 

features. In comparison, simpler models such as 

Logistic Regression and Decision Tree offer ease of 

interpretation but struggle to effectively manage 

intricate patterns in heart disease data. The Cloud-

Based ECCNN Architecture displays high accuracy 

and well-rounded metrics in all categories, 

particularly excelling in scalability and real-time 

processing for cloud-based heart disease detection. 

The CNN + SVM model integrates CNN's ability to 

extract features with SVM's classification strength, 

establishing a solid performance benchmark but 

falling short of ECCNN in identifying subtle 

distinctions. CNN + Random Forest improves 

generalization through Random Forest's feature 

flexibility but proves slightly less effective than 

ECCNN in recognizing subtle patterns. SVM 

performs well with large datasets and non-linear 

patterns but may miss complex features crucial for 

heart disease prediction compared to CNN-based 

models. Logistic Regression provides simplicity and 

interpretability but has difficulty with high-

dimensional data, serving as a useful reference point 

despite its limitations in linear approaches. Decision 

Trees are effective for linearly separable data but lack 

adaptability to complex, high-dimensional heart 

disease patterns. Finally, K-Nearest Neighbors is 

prone to overfitting and has limited complexity, 

underperforming on high-dimensional heart disease 

data but functioning as a basic baseline model. [Table 

1] 

 

Table 1: The performance metrics of the different models 

S. No Method Accuracy Precision Recall F1-Score AUC 

1 Cloud-Based ECCNN 99.2% 93.5% 92.7% 93.1% 96.2% 

2 CNN + SVM 90.3% 89.2% 88.1% 88.6% 92.5% 

3 CNN + Random Forest 89.5% 88.6% 87.8% 88.2% 91.7% 

4 Deep Neural Network (DNN) 88.7% 87.9% 86.5% 87.2% 90.8% 

5 Logistic Regression (LR) 83.4% 82.1% 81.7% 81.9% 85.5% 

6 Support Vector Machine (SVM) 82.6% 81.9% 80.2% 81.0% 84.8% 

7 Decision Tree (DT) 79.5% 78.2% 77.6% 77.9% 80.9% 

 

CONCLUSION 

 

The suggested Cloud-Based Efficient Convolutional 

Neural Network (ECCNN) framework presents a 

powerful approach for identifying heart disease in its 

early stages by harnessing machine learning 

capabilities within a cloud-computing setting. This 

system shows notable enhancements in precision, 

rapidity, and resource utilization, making it suitable 

for instantaneous analysis in medical environments. 

By employing cloud infrastructure, the ECCNN 

framework ensures smooth data handling and access 

to extensive datasets, improving predictive 

capabilities while reducing the demand for local 

hardware. The findings suggest that this method can 

support medical professionals in recognizing early 

signs of heart disease, enabling timely interventions 

and potentially preserving lives. The Cleveland heart 

disease dataset undergoes pPre-processing to address 

missing values and enhance prediction accuracy. The 

research also explores the viability of using a 

quantum machine learning (QML) framework 

through cloud computing to classify cardiac 

conditions, utilizing techniques such as support 

vector machine (SVM), artificial neural network 

(ANN), and K-nearest neighbors (KNN). 

Experimental outcomes reveal that the E-CNN 

attains an accuracy of 99.2%, precision of 99.4%, 

recall of 99.5%, and F1 score of 75%. 98 highest 

Kappa score of 98%. The quantum support vector 

machine (QSVM) approach exhibits superior 

performance with an accuracy of 85%, precision of 
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79%, recall of 90%, and F1-score of 99.3%. The 

Bagging_QSVM model demonstrates exceptional 

performance, achieving perfect scores across all key 

performance metrics. The study emphasizes the 

potential of ensemble learning techniques, like 

bagging, in improving the accuracy of quantum 

method predictions. The proposed cloud-based E-

CNN architecture and QML framework offer 

promising solutions for real-time, remote analysis of 

health data, aiding in preventive healthcare and early 

detection of heart disease. 
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